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Abstract

Our understanding of how the DNA sequences of cis-regulatory elements encode
transcription initiation patterns remains limited. Here we introduce CLIPNET,
a deep learning model trained on population-scale PRO-cap data that accu-
rately predicts the position and quantity of transcription initiation with single
nucleotide resolution from DNA sequence. Interpretation of CLIPNET revealed
a complex regulatory syntax consisting of DNA-protein interactions in five major
positions between−200 and+50 bp relative to the transcription start site, as well
as more subtle positional preferences among different transcriptional activators.
Transcriptional activator and core promoter motifs occupy different positions and
play distinct roles in regulating initiation, with the former driving initiation quan-
tity and the latter initiation position. We identified core promoter motifs that
explain initiation patterns in the majority of promoters and enhancers, including
DPR motifs and AT-rich TBP binding sequences in TATA-less promoters. Our
results provide insights into the sequence architecture governing transcription
initiation.
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Introduction

Transcriptional regulation, the mechanism by which cells dynamically modulate the
expression of each gene in their genome, plays a pivotal role in nearly every cellular
process and is among the most important molecular pathways underlying variation in
complex traits [1–9]. Transcription is controlled by at least two classes of transcrip-
tion factor protein, which bind to characteristic DNA sequence motifs and work in
concert to tune the rates of early steps during the RNA polymerase II (Pol II) tran-
scription cycle [10]. First, over two thousand transcriptional activators and repressors
are encoded in the human genome, each of which binds a characteristic DNA sequence
motif in a cell-type specific context [11]. Second, general transcription factors (GTFs)
in the Pol II preinitiation complex (PIC) bind highly degenerate core promoter motifs
[12], the best characterized of which include the TATA box [13] and the initiator ele-
ment [14]. DNA sequence motifs for transcriptional activators and GTFs are found
at both promoter and enhancer regions, and appear to have a role in driving both
varieties of regulatory activity [15, 16].

Despite fairly advanced knowledge about the proteins which control transcrip-
tion, our understanding of how genomes encode regulatory activity remains limited.
Although many of the DNA sequence motifs involved in transcription factor-DNA
interactions are known [17–19], strong matches to these sequence motifs in genomic
DNA are surprisingly rare [20, 21]. Both transcriptional activators and GTFs
frequently bind degenerate, low-affinity DNA sequences that are challenging to dis-
tinguish from unbound genomic DNA, even in cis-regulatory elements that control
critical transcription programs [22, 23]. One potential way to reconcile specific bind-
ing to low-affinity DNA sequence motifs is that transcription factor binding sites are
organized in a stereotypical pattern, such that individual DNA sequence motifs (by
analogy, words) are found in the context of a longer regulatory syntax (by analogy, sen-
tences) [22–25]. Classical examples report a structured order and orientation of DNA
sequence motifs at an evolutionarily-conserved IFNB1 enhancer [26] and at several
enhancers controlling patterning during Drosophila development [27, 28]. Although
hints in the literature suggest that syntax is critical for regulatory function, both the
general principles and the impact of regulatory syntax on transcription remain almost
completely unknown.

Here we investigated the regulatory syntax of transcription initiation using CLIP-
NET, a sensitive deep learning model trained to predict transcription initiation in
mammalian cells using population-scale PRO-cap data. Interpretation of CLIPNET
using gradient and in silico mutagenesis-based approaches revealed a core regulatory
syntax consisting of five positions located between −200 and +50 bp of the tran-
scription start site with evidence of important DNA-protein interactions, which we
interpret as the binding sites for transcriptional activators and general transcription
factors. Notably, although the majority of promoters and enhancers lack a canoni-
cal TATA box, they nevertheless had DNA sequence motifs mediating interactions
between DNA and the PIC that collectively explain their initiation profiles. Finally,
we find evidence that transcriptional activators and general transcription factors are
often highly specialized for controlling either the quantity or position of transcription
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initiation, suggesting new models for a division of labor among transcription-related
proteins.

Results

CLIPNET predicts transcription initiation from regulatory
sequence

We developed CLIPNET (Convolutionally Learned, Initiation-Predicting NETwork)
to investigate how DNA sequence controls the position of transcription initiation.
CLIPNET is a deep learning model trained to predict nucleotide resolution maps of
transcription initiation from a matched DNA sequence. We trained CLIPNET using a
dataset consisting of matched precision run-on and 5’-capped (m7G) RNA enrichment
(PRO-cap) [29] and individual genomes [30] from 58 genetically distinct lymphoblas-
toid cell lines (LCLs) (Fig. 1A). This dataset has three major advantages that could
improve out-of-sample predictions about the impact of DNA sequence on initiation.
First, PRO-cap resolves transcription initiation at all transcriptionally active cis-
regulatory elements without the confounding influence of mRNA degradation rates
by sequencing capped RNAs associated with an active Pol II. Second, this dataset
is focused on a single trans environment, LCLs, which should allow the model room
to encode cell-type specific DNA sequence motifs like transcriptional activators and
repressors. Third, this dataset provides a resource with matched PRO-cap and DNA
sequence data, which improves [31–34] over the standard practice of using a haploid
reference genome as the sole source of input DNA [35–41].

CLIPNET’s architecture incorporates recent advances in predicting genome-wide
molecular assays at single nucleotide resolution, most notably those utilized in BPNet
[35] and APARENT 1 [42] and 2 [43]. Briefly, CLIPNET consists of two convolutional
layers, followed by a tower of dilated convolutions separated by skip connections (Fig.
1B). We decomposed the output into signal profile (i.e., the distribution of PRO-cap
reads within a 500 bp window) and quantity (i.e., total read coverage) and utilized a
multiscale loss function to separately optimize the predicted profile and quantity of
initiation. Inspired by the ensembling strategy employed by Borzoi [41], we partitioned
the human genome along chromosomal boundaries into 10 roughly equally-sized folds.
We then trained 9 replicate models, each using a distinct hold-out dataset, with one
data fold (consisting of chromosomes 9, 13, 20, and 21) being completely withheld
and reserved for final benchmarking of the ensembled model. In addition to enabling
model ensembling, this model training approach allowed us to fairly benchmark the
performance of the ensemble model on completely held-out data, evaluate individual
model predictions at every position in the genome, and assess variability in learned
feature importance.

Several complementary lines of evidence indicate that CLIPNET accurately learned
the sequence basis of transcription initiation. First, CLIPNET achieved high con-
cordances (median ensemble Pearson’s r = 0.760, individual models Pearson’s r =
0.644 − 0.680) between observed and predicted PRO-cap tracks in each of the 67
libraries on the held-out chromosomes (Fig. 1C, Supplementary Fig. S1A). Notably,
it significantly outperformed a naive, average profile predictor (median Pearson’s

3



15

0
chr21:33229617−33230116 Observed

Pearson's r

Average profile
(med. = 0.213)

8

0 0.5 1

D
en

si
ty

0

CLIPNET
(med. = 0.760)

Replicates
(med. = 0.912)

C

18

0
Predicted

0

10

Predicted

0 500Position (bp)

IFNAR2

INTS6100

0
Observed

chr13:51452941−51453490

R
P

M
R

P
M

chr9:70419926−70420425

chr20:32972101−32972600
0

0

0.6

0.9

Observed

Predicted

0

0

7

5

3

30

lo
g1

0(
pr

ed
ic

te
d 

qu
an

tit
y)

log10(observed quantity)

Density
H

L

Pearson's r = 0.633E

KLF9-DT
Observed

Predicted

0 500Position (bp)G

Log Density
H

L

0

P
re

di
ct

ed
 T

S
S

500

500Observed TSS

Pearson's r = 0.808D

F

B

...

...

...

...

...

...

...

...

000010200000000 ... 2
200200022100002 ... 0
022012000002200 ... 0
000000000120020 ... 0

A
C
G
T

9✕

n = 64, w = 8

Input: 1000 × 4

n = 128, w = 4

Exponential dilation (2×)
n = 64, w = 3

n = [1000, 1]

9.3 Output: [500 × 2, Total Quantity]

Convolutional layer

Dense layer

Skip connection

A

⋯ TATAAAAAGGA⋯

⋯ TATCAAAAGGA⋯

⋯ TATAAAARGGA⋯

n = 58
+9 rep

 CLIPNET

Learn

Personalized genomes PRO-cap tracks

⋯ ⋯
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r = 0.213, whole genome) and approached experimental replication (median Pear-
son’s r = 0.912, held-out chromosomes). Second, CLIPNET accurately predicted the
exact position of the main transcription start site (TSS), that is, position with the
highest PRO-cap signal within each 500 bp prediction window (ensemble Pearson’s
r = 0.808, individual models Pearson’s r = 0.712 − 0.768) (Fig. 1D, Supplementary
Fig. S1A). Indeed, the sequence logo of the predicted TSSs closely resembled the most
common human initiator dinucleotide (Supplementary Fig. S1C), recovering perhaps
the best characterized sequence feature of transcription initiation [44]. Third, the total
quantity of transcription initiation in the 500 bp window was well correlated with the
model predictions (ensemble Pearson’s r = 0.633, Fig. 1E; individual models Pear-
son’s r = 0.532−0.608, Supplementary Fig. S1A). Fourth, visual inspection supported
a remarkably strong correspondence between experimental data and CLIPNET pre-
dictions at both promoters (Fig. 1F) and enhancers (Fig. 1G). Taken together, these
results strongly indicate that CLIPNET learned how the sequence of cis-regulatory
elements encodes patterns of transcription initiation.

Distinct DNA sequence architecture controls initiation
quantity and profile

We next sought to identify the DNA sequence features that are most informative in
predicting transcription initiation. We used DeepSHAP [45] to quantify the contribu-
tion of individual nucleotides within a given input sequence to CLIPNET predictions.
As CLIPNET separately predicts base-resolution tracks of transcription initiation and
the total quantity of initiation within a given 500 bp window, we computed DeepSHAP
scores for both the profile and quantity output nodes.

Examination of DeepSHAP tracks revealed that multiple DNA sequence motifs
are often required to accurately predict transcription initiation at both promoters and
enhancers. For example, the promoter of IRF7 contains at least five distinct DNA
sequence motifs driving quantity or profile: an SP/KLF motif, an ETS motif, an NFY
motif, a TATA box, and an initiator dinucleotide (Fig. 2A). Transcription initiation at
the ENCODE candidate enhancer EH38E3485200 appears to be driven by at least four
distinct motifs: two ETS, one SP/KLF, and one NRF1 (Fig. 2B). Using DeepSHAP
attribution scores also recovered rare DNA sequence motifs, such as the TCT motif
in the promoter of ribosomal protein coding genes [46] (Supplementary Fig. S2A, B,
Supplementary Info. 4), a DNA sequence preference that is both rare and associated
with an unusual TBP-independent transcriptional mechanism [47–49].

We observed a striking discordance between DeepSHAP scores explaining the pro-
file and quantity of initiation. Specifically, CLIPNET interpreted core promoter motifs
at both loci (the TATA-like motif and the GATSS dinucleotide at the IRF7 promoter
and the TGTSST trinucleotide at the enhancer EH38E3485200) as being being the pri-
mary determinants of the profile of transcription initiation. By contrast, the relative
importance of the sequence-specific transcription factor motifs present at these two
cis-regulatory elements are highly reduced in the profile DeepSHAP scores, suggest-
ing that these two classes of regulatory motifs and their protein-binding partners play
distinct roles in determining transcription initiation at cis-regulatory elements.
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To identify classes of informative motifs, we used TF-MoDISco [50, 51] to cluster
common DNA subsequences contributing to either profile or quantity. The majority of
DNA sequence motifs important for predicting the quantity of transcription initiation
resembled the known consensus motifs of strong transcriptional activators (Fig. 2C),
including those recognized by both ubiquitously expressed (e.g., SP/KLF, YY1, and
CREB) and cell-type specific (ETS, NRF1, and IRF4) transcription factors. We also
found the CA initiator dinucleotide, the TATA box (Supplementary Fig. S2C), and a
large number of degenerate CpG-rich motifs in promoters (Supplementary Fig. S2D).

By contrast, the profile of transcription initiation was best explained by core pro-
moter motifs (Fig. 2D, Supplementary Fig. S2E): the TATA box, several distinct
initiator motifs, and a heterogeneous collection of motifs representing the downstream
promoter region (DPR) (discussed further below). The most common initiator motif
consists of a CA dinucleotide followed by either an A or a T in the TSS+2 position (Fig.
2D), consistent with the previously reported BBCATSSBW initiator motif [52, 53]. We
also identified a number of rarer initiator motifs, including a TA dinucleotide, which
has been described as the second most common initiator after CA in mammals [52, 54].
Finally, CLIPNET also attributed a role to transcriptional activators in shaping initi-
ation profile (Fig. 2D). However, the contribution scores of transcriptional activators
were consistently several-fold lower than those of the TATA box or initiator, indicating
that they play relatively minor roles in controlling initiation profiles.

Conserved DNA sequence architecture underlying promoters
and candidate enhancers

To investigate the differences in the profile of transcription initiation between pro-
moters and candidate enhancers, we split cis-regulatory elements into gene-proximal
and distal regulatory classes. TF-MoDISco identified the same DNA sequence motifs
in both promoters and enhancers (Supplementary Fig. S2C, D). Promoters had a
markedly higher frequency of motifs that explain initiation quantity (Fig. 2C), many of
which resemble the known binding motifs of transcriptional activators such as SP/KLF
factors, IRFs, NRF1, and ETS. However, these differences predominantly reflect the
higher overall transcriptional activity in promoters compared to distal enhancers (Sup-
plementary Fig. S2F). By contrast, DNA sequence motifs explaining initiation profile,
which does not systematically differ between promoters and enhancers, were much
more similar in frequency between these two regulatory classes (Fig. 2D). Differences
observed in the profile motif frequency were in the direction expected based on the
higher G/C content in CpG-island enriched promoters. For instance, CLIPNET iden-
tified the G/C-rich YY1 and NRF1 motifs with a higher frequency in promoters and
the A/T-rich IRF and POU motifs with a higher frequency in enhancers (Fig. 2D). We
conclude that the DNA sequences responsible for controlling the position and abun-
dance of transcription initiation are similar between these two classes of cis-regulatory
elements.
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CLIPNET predicts the impact of initiation QTLs

Correctly predicting and interpreting the functional role of QTLs is a central problem
in modern genetics and a difficult challenge, even for state-of-the art sequence-to-
function models [32–34]. To assess CLIPNET’s ability to predict the functional impact
of regulatory variants, we leveraged an existing initiation QTL dataset in LCLs [29].
Kristjánsdóttir et al. previously mapped transcription initiation quantitative trait loci
(tiQTLs), SNPs associated with changes in initiation quantity, and directionality quan-
titative trait loci (diQTLs), SNPs associated with differences in the ratio of initiation
events between DNA strands, a type of difference in profile. We focused our analysis
on a set of biallelic tiQTLs (n = 2, 057) and diQTLs (n = 1, 207). We summarized dif-
ferences in transcription initiation between individuals homozygous for the reference
and alternative alleles using the L2 norm, a metric which captures information about
allelic changes in both quantity and profile [41]. Comparing L2 norms between exper-
imental and CLIPNET predictions for each QTL showed that the difference between
alleles were reasonably well-correlated across both tiQTLs (Pearson’s r = 0.48; Fig.
3A) and diQTLs (Pearson’s r = 0.54; Fig. 3B).

Examination of individual loci showed that CLIPNET accurately predicted changes
in both the quantity and profile of several distinct types of ti- or diQTLs, including
large focal changes in a single initiation site, or changes in initiation affecting multi-
ple initiation sites in complicated promoters. For example, rs185220 is a tiQTL which
disrupts both initiation sites in a divergent pair on the plus and minus strand, leading
to a substantial decrease in the quantity of transcription initiation. This effect was
largely recovered by CLIPNET and attributed to the loss of a strong SP/KLF binding
site on the minor allele (Fig. 3C, Supplementary Fig. S3A). By contrast, the diQTL
rs8050061 was associated with a localized impact on initiation at a specific nucleotide,
an effect which was also recovered by CLIPNET and explained by a disruption to an
initiator motif overlapping the affected position (Fig. 3D, Supplementary Fig. S3B).
Collectively, our analyses demonstrate that CLIPNET can predict how DNA sequence
changes impact both the quantity and profile of transcription initiation with reason-
ably high accuracy, and does so by correctly interpreting the effects of different classes
of regulatory motifs.

Five distinct DNA-protein interactions form the core syntax of
transcription initiation

Having shown that CLIPNET predicts the impact of DNA sequence changes on
transcription initiation with reasonably high accuracy, we decided to use in silico
mutagenesis to explore how DNA sequence features influencing transcription initia-
tion are organized at cis-regulatory elements across the genome. We performed in
silico mutagenesis on 5,000 random cis-regulatory elements by mutating every 10 bp
window between −200 and +200 bp of the PRO-cap-defined max TSS to a random
sequence (Fig. 4A, “ISM shuffle” [41]). Mutations between −125 and +50 bp had, on
average, the largest impact on both the profile and quantity of transcription initiation,
indicating the critical importance of this region for specifying transcription (Fig. 4B).
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From these ISM shuffle profiles, we identified five distinct positions within this
window each having a characteristic impact on the profile or quantity of transcription
initiation (Fig. 4B, C). Three of these reflect DNA-protein interactions in the core
promoter region between TSS −25 and +25 bp, which directly interact with the PIC
[55–57]. The most important DNA element controlling initiation profile occurs at the
TSS, and reflects the initiator element. Interactions at TSS −25 and +25 bp are
also relatively important for controlling transcription profile. The mode at −25 bp
corresponds to interactions between DNA and TBP, a protein in TFIID which binds
the TATA box [12]. The mode at +25 bp corresponds to the mammalian DPR, a DNA
sequence motif well-characterized in Drosophila [21, 58], but which was only recently
reported in human cells [59, 60].
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Motifs at −50 and +45 bp were too far away from the TSS to bind directly to core
PIC components. Motifs at +45 bp correspond roughly to the position at which Pol II
pauses [61], and may reflect interactions between the pause complex and DNA [52, 62,
63], or they may reflect unknown interactions between DNA and the Pol II elongation
complex as it comes up to speed [64–66]. DNA sequence motifs located at TSS −50
bp were the most important determinant of transcription quantity. This is consistent
with previous observations of the binding patterns of many transcriptional activators
[15, 61, 67], and with the distribution of the transcriptional activator motifs identified
by TF-MoDISco (Fig. 5A). In contrast to sequences closer to the TSS, (Fig. 4B), we
found that these more upstream sequence motifs have a stronger impact on initiation
quantity than profile. These results highlight the diversity of regulatory motif position
and function, with TSS-proximal core promoter motifs appearing to primarily drive
initiation profile and upstream transcriptional activator motifs determining initiation
quantity.
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Transcriptional activators drive the quantity of transcription
under positional constraints relative to the core promoter

To further explore the roles of different transcriptional activator motifs, we conditioned
on subsets of DNA sequence motifs which were confirmed to bind specific transcription
factors (based on ChIP-seq data in LCLs [68]) and also carry a strong match to
the DNA sequence consensus motif. Analysis of two transcriptional activators, IRF4
and SP1, revealed similar ISM shuffle profiles to the random set; namely mutations
between 200 and 50 bp upstream of the TSS, where the IRF4 and SP1 DNA sequence
motifs were most commonly found, had the largest impact on transcription initiation
quantity (Fig. 5B). Targeted mutagenesis specifically disrupting the IRF4 or SP1 DNA
sequence motifs showed striking, bidirectional changes in the quantity of transcription
that were symmetric and centered on the DNA sequence motif (Fig. 5C).

While activator motifs had a mode at −50 bp, they showed higher activation over
a fairly broad window between 125 and 50 bp upstream of the TSS (Fig. 4B). At
least part of this variability reflects differences between transcriptional activators. For
instance, SP1 binding sites were found in a fairly narrow window between −50 and
−75 bp (Fig. 5B; teal shade denotes the interquartile range in the position of the
motif), and mutation had a focused yet bidirectional impact on initiation ~50 bp
from the motif (Fig. 5C). By contrast, IRF4 binding sites were scattered over a much
broader window between −50 and nearly −200 bp relative to the TSS (Fig. 5B, left,
teal shade denotes motif interquartile range), and had a broader bidirectional impact
on initiation over ~100 bp (Fig. 5C).

To examine the possibility of a more transcriptional activator-specific syntax over a
broader set of activators, we examined histograms of the position of each TF-MoDISco
motif contributing to initiation quantity. Positional enrichments for IRF and SP/KLF-
like TF-MoDISco motifs were similar to those based on ChIP-seq validated consensus
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motif matching, with a broader distribution in IRF while SP/KLF occupied a more
focal position (Fig. 5A). Across 9 different transcriptional activators, CLIPNET found
evidence of distinct positional preferences, with some motifs binding close to, or even
downstream of, the TSS (e.g., ETS, NRF1, YY1), while others had a stronger prefer-
ence for either the −50 bp position or even further upstream (e.g., SP1, NFY) (Fig.
5A). YY1 was the most distinct, with most of its motifs occurring downstream of the
TSS (Fig. 5A). These results hint that different transcriptional activators have distinct
positional syntaxes relative to the primary TSS.

PIC-DNA structural interactions govern nucleotide importance

Although we know the optimal DNA sequence motifs that interact with the PIC
(TATA box and initiator), these motifs are found at only a small fraction of human
promoters and enhancers [12]. Conversely, CLIPNET accurately identified the initia-
tion profile at nearly all active cis-regulatory elements genome-wide. To gain a broader
understanding of the DNA sequence basis of transcription initiation, we analyzed
previously published cryogenic electron microscopy (cryoEM) structures of the mam-
malian PIC assembled on an artificial super core promoter (SCP) containing a TATA
box, an initiator, and a DPR. We analyzed three PIC structures that are believed
to represent three sequential stages of PIC assembly: the core PIC (cPIC; TFIID, A,
B, and F), intermediate PIC (mPIC; cPIC + TFIIE), and holo PIC (hPIC; mPIC
+ TFIIH) [69]. DeepSHAP profile attribution of the sequence of the SCP recovered
a well-positioned initiation site driven by the DNA sequence of all three major core
promoter elements: a TATA box, an initiator, and a DPR (Fig. 6A, top).

To measure the physical interactions between core promoters and the PIC, we
measured the minimum distance between each nucleotide in the SCP and any amino
acid in each of the three PIC structures. The most consistent DNA-protein interactions
were with the TATA box, which was located within 5 Å of TBP in all three PIC
structures (Fig. 6A). In contrast, interactions between DPR and the PIC structure
were much more variable (Fig. 6A). CLIPNET attributed a high importance to the
end of the DNA sequence annotated as the DPR, which was also consistently within
5 Å of the PIC. Conversely, CLIPNET preferentially recognized the importance of
nucleotides comprising the DPE (the second half of DPR), which were closest to the
intermediate PIC (mPIC), but had much more variable interactions with the cPIC and
mPIC. The DPR has a similar importance to the TATA box in Drosophila promoters
[21, 58], but was only recently identified in humans [59, 60], and has a DNA sequence
basis that remains obscure as of this writing. This variability in PIC-DNA structural
interactions could explain the weaker DNA sequence preference of DPR, and hence
why the human DPR sequence has remained so elusive [59, 60].

DNA sequence specificity of the human DPR

Pioneering studies have shown that DPR is of similar importance to the TATA box
in Drosophila promoters [21, 58, 70], but the importance of the human DPR has been
more challenging to pin down. When we examined the sequence motifs identified by
TF-MoDISco profile, we discovered a collection of similar DNA sequence motifs that
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Fig. 6 DNA sequence specificity of the human DPR. (A) Analysis of protein-DNA contacts
of three stages of PIC assembly onto an artificial SCP. We observed a correspondence between the
regions of closest contact and the core promoter motifs TATA (red), Inr (grey), and DPR (magenta)
identified by DeepSHAP profile. (B) Examples of 7 DPR motifs identified by TF-MoDISco profile. We
found four (top) enriched in the canonical TSS +25 position and three (bottom) enriched at the +50
position. (C, D) Predictions and DeepSHAP profile scores for two DPR-driven promoters identified,
one TATA-less (C) and one TATA-containing D). The initiator and DPR motifs are highlighted in
insets to the right.

are found in the position of the DPR, approximately 25 base pairs downstream of
the TSS (Fig. 6B). While most of these motifs occurred primarily at the TSS +25
bp position, we also identified another set of similar sequence motifs occurring fur-
ther downstream, at the TSS +50 bp position (Fig. 6B). The common core sequence
was G(A/G)AG, similar to a recent mammalian DPR motif representation [59, 60],
but considerable degeneracy was present in the motifs (Fig. 6B). We also observed
an extended GC rich stretch of DNA upstream of the core sequence motif (Fig. 6B).
DPR was more common than a canonical TATA box, occurring about twice as fre-
quently (Fig. 2D, Fig. 6B). We identified examples of cis-regulatory elements in which
DPR appeared both independently of (Fig. 6C) and together with (Fig. 6D) a TATA
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box. Curiously, we did not find DPR-like motifs using TF-MoDISco quantity, suggest-
ing that this core promoter motif is not a particularly strong driver of transcription
quantity, and instead primarily serves to drive Pol II positioning.

TBP binds the most AT-rich sub-sequence in a promoter or
enhancer

TBP is known to be both essential for transcription initiation and to strongly bind
to the TATA box. However, fewer than 15% of promoters contain a TATA box
[12, 44], and the sequence specificity of TBP binding at TATA-less promoters remains
unknown. We noticed that CLIPNET devoted a large fraction of layer 2 neurons
(width = 15 bp) to learning DNA sequences ~25 bp upstream of the TSS (Supple-
mentary Fig. S4A), and reasoned that these may indicate that CLIPNET is learning
diverse, degenerate binding patterns at TATA-less promoters. Filters enriched in the
−25 bp position recognized DNA sequence with a gradation of GC content (0.1− 0.5)
(Supplementary Fig. S4A), consistent with previous observations of enrichment for
AT-rich sequences at TBP binding sites.

To explore the sequence specificity of TBP binding, we first used saturation muta-
genesis to verify whether CLIPNET can correctly identify the importance of a strong
TATA box to driving transcription initiation. We performed saturation mutagenesis
on the TATA box of 302 TATA-containing cis-regulatory elements (Fig. 7A). This
analysis identified the canonical TATAWAWR sequence as the least disruptive to both
initiation profile and quantity (Fig. 7B), consistent with experimental saturation muta-
genesis [71, 72]. G or C substitutions in positions 2 through 5 (i.e., ATAW) of the
canonical motif were especially disruptive, while A or T substitutions were more likely
to be tolerated. Moreover, when we replaced the entire TATA box with a random 8-
mer, we observed a distinct, asymmetric mutational effect, with only the downstream
TSS being impacted (Supplementary Fig. S4B). This is in stark contrast with the
bidirectional effect of IRF4 or SP1 that we observed previously in this paper, but is
consistent with previous analyses of diQTLs in TATA boxes [29].

We hypothesized that an AT-rich patch of DNA in a core promoter is sufficient
to aid TBP binding in the absence of a canonical TATA box. To test this model, we
replaced the 8 bp window corresponding to the TATA motif with random DNA, con-
trolling the GC content (Fig. 7A). Higher GC content was nearly always correlated
with a higher disruption to the transcription initiation profile (Fig. 7C, top, Supple-
mentary Fig. S4C). Intriguingly, any disruption of a strong TATA box had a large
impact on the overall transcription quantity, with no additional effect on quantity as
GC content increased (Fig. 7D, bottom, Supplementary Fig. S4C). These results are
consistent with a model in which a relatively strong match to the TATA consensus
is required for a TATA box to substantially impact transcriptional output, but just
a short AT rich sequence at the −25 bp position is sufficient to position the PIC by
interacting with TBP and establish the position at which transcription initiates.

To determine whether AT rich sequences can position the PIC in endogenous
TATA-less cis-regulatory elements, we considered CpG islands cis-regulatory elements
(which are overwhelmingly TATA-less promoters) without a canonical TATA box.
Plotting the GC content relative to the position of the max TSS showed a window of
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Fig. 7 DNA sequence specificity of TBP binding. (A) We used targeted in silico mutagenesis
to measure the sequence properties of the TATA box. We performed both site saturation (B) and
random substitutions of 8-mers sampled to have specific GC contents (“GC shift”) (C). While the
effects of site saturation mutagenesis on initiation profile (top) and quantity (bottom) were relatively
similar, the effects of GC shift mutagenesis were quite distinct between profile (top) and quantity
(bottom). (D, E) Relationship between importance of the TBP binding site measured by ISM shuffle
(top and middle) and GC content (bottom) at TATA-containing (D) and TATA-less CpG island (E)
cis-regulatory elements.
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decreased GC content at the −25 bp position, indicating that even CpG island pro-
moters have a relatively AT-rich sequence patch in the position where TBP binds (Fig.
7D-E). To determine whether this position plays a role in the profile and quantity of
transcription initiation, we used ISM shuffle to measure positional sequence impor-
tance in TATA-containing and TATA-less CpG island cis-regulatory elements (Fig.
7D-E). As noted above, mutating the window containing the TATA box had a large
impact on both the shape and quantity of initiation in TATA containing cis-regulatory
elements (Fig. 7D). Mutating DNA in the −25 position of CpG island promoters
impacted the correlation, second in magnitude only to the initiator element, and less
of an impact than surrounding DNA on initiation quantity (Fig. 7E). These findings
suggest that TBP binds most strongly to a canonical TATA box and increases tran-
scriptional output when available, but otherwise will bind the most AT-rich sequence
in the vicinity of a promoter and help establish the position of the PIC and ultimately
Pol II initiation.

Discussion

Despite an advanced lexicon of the DNA sequence motifs (i.e., words) that regulate
transcription, we still have very little understanding of the syntax with which these
motifs are organized (i.e., the structure of sentences). Several classical examples are
known in which the order and orientation of DNA sequence motifs are crucial for
regulatory function [26–28]. Despite these case studies, however, the general properties
of regulatory syntax have proven much more challenging to pin down and the extent
to which syntax is important for regulatory function at the majority of cis-regulatory
elements remains debated [24, 25].

Previous work on regulatory syntax has focused on interactions between tran-
scriptional activators [22, 23, 35]. Our work builds on this concept by demonstrating
surprisingly strong and systematic positional dependencies between binding sites rec-
ognized by transcriptional activators and the core promoter motifs which ultimately
specify the transcription start site. Our findings build on observations that transcrip-
tional activators are enriched in the central region between divergent transcription
start site pairs [15, 61, 67, 73]. We report that these positional dependencies have con-
siderable variability between different transcription factors, most notably captured in
our study for IRF4 and SP1 binding sites. Different transcription factors have distinct
functional roles in regulating different stages in the Pol II transcription cycle: some
are pioneer factors that open chromatin [74–76], while others catalyze the release of
Pol II from a paused state into productive elongation [64, 77, 78]. We speculate that
structural constraints imposed by the transcription factor’s functional role underlies
these different positional requirements on the binding position of transcription factors
relative to the PIC. Moreover, the dependencies between different functional classes
of transcriptional activators and the PIC could make them a more general feature of
regulatory syntax than interactions between different cell-type specific transcription
factors.

Our work has also built substantially on our knowledge of the DNA sequence
motifs that specify the location of the PIC and the position of transcription initiation.
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The majority of human promoters do not have strong matches to the best known
two core promoter elements: the TATA box and the initiator [12]. While many other
core promoter motifs have been identified in a variety of model organisms [21, 58, 59,
70, 79, 80], the DNA sequence composition and importance in mammalian promoters
remains a subject of extensive debate. Our work identified a larger, more diverse, and
more degenerate group of DNA sequence motifs that are collectively responsible for
specifying the profile, or precise position of transcription initiation at all promoters
and enhancers genome-wide. Perhaps most notably, CLIPNET identified a purine-rich
DPR sequence preference (most commonly a G(A/G)AG motif), primarily impacted
initiation profile rather than quantity, and appeared to have two distinct positional
preferences at the TSS +25 and +45 positions. These constraints may explain why
the sequence of DPR has remained so challenging to identify.

We also report a strong role for the TATA box and more degenerate TATA-like
motifs. We found evidence that an AT-rich DNA sequence contributes to transcription
initiation profile at many TATA-less promoters. This finding may explain how TBP
binds DNA at the −25 position, even in promoters that do not contain a TATA
box [81]. These DNA sequence preferences appear to reflect simply the most AT-rich
DNA sequence in each cis-regulatory element, and affect initiation profile much more
than quantity. These findings are consistent with a model in which the best available
binding site for TBP, in conjunction with DPR and Inr, are collectively responsible for
positioning a pool of Pol II that is assembled by other transcription-regulated proteins
binding in their vicinity.

Finally, our study indicates a “division of labors” by which different types of tran-
scription factors have a synergistic role on transcriptional output. Our results support
a model in which transcriptional activators, and to some extent a strong TATA box,
establish the abundance of initiation, perhaps by recruiting a pool of transcriptional
proteins or clearing chromatin, while core promoter motifs bound by GTFs guide the
assembly of the PIC and the precise location of transcription initiation. These obser-
vations explain how transcription initiation can be simultaneously driven by multiple
protein complexes that collaborate to clear chromatin, recruit proteins necessary for
transcription, assemble and position the PIC, and begin transcription.

Methods

Training data processing

Aligned PRO-cap data from 67 genetically distinct LCLs (+ 10 replicates)
were downloaded from Gene Expression Omnibus accession GSE110638. Phased
genotypes were downloaded obtained from the 2019 1000 Genomes Project
release (https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data collections/1000 genomes
project/release/20190312 biallelic SNV and INDEL/). As 9 individuals were not
included in this particular release, they were excluded from this study, resulting in
67 total PRO-cap libraries (58 individuals + 9 replicates, Supplementary Info. 1).
To ensure consistency between the PRO-cap and genotyping data, we lifted over the
PRO-cap libraries from their original hg19 reference to hg38.
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We generated individualized genomes by applying the genotyped SNPs from each
individual to the hg38 reference genome. Indels and structural variants were excluded
as they were relatively rare and could introduce index shifts that would require
remapping of the entire PRO-cap dataset and render QTL analyses significantly more
difficult to perform. PRO-cap peaks were individually called in each library using a
pre-publication version of PINTS [82] supplied by the authors. As cis-regulatory ele-
ments commonly consist of two divergently transcribed core promoters spaced roughly
110 bp apart15, we filtered for peaks that were no more than 200 bp away from a
peak on the divergent strand. We then extracted 1kb of matched genomic sequence
and PRO-cap tracks around the center of each PINTS call. To reduce overfitting, we
randomly jittered the position of these windows by up to 250 bp.

To enable model ensembling, we partitioned the genome along chromosomal bound-
aries into 10 roughly equally sized folds. We set aside fold 0 (consisting of chromosomes
9, 13, 20, and 21) for final evaluation of the model ensemble. The remaining 9 folds
were then used to train 9 replicate models, each of which used a distinct holdout fold.
This ensures that prediction quality at each position within the genome can be fairly
evaluated using individual models.

One-hot encoding is the standard for genomic deep learning models; however, as
each individual will be heterozygous at many SNPs, we had to take a slightly different
sequence encoding approach to be able to represent individualized genomic sequences.
Instead, we used a two-hot encoding; that is, we encoded each individual nucleotide
at a given position using a one-hot encoding scheme, then represented the unphased
diploid sequence as the sum of the two one-hot encoded nucleotides at each position.
The sequence AYCR, for example, would be encoded as [[2, 0, 0, 0], [0, 1, 0, 1], [0, 2,
0, 0], [1, 0, 1, 0]]. This encoding scheme makes two simplifying assumptions that we
believe are biologically reasonable: (1) additivity in the dosage effects of individual
nucleotides and (2) that haplotype structure confers no additional information. While
the previously published BigRNA model used a more sophisticated encoding structure
to represent individual, phased sequences [31], we believe that a two-hot encoding is
a reasonable simplification for working with short input sequences (1 kb).

CLIPNET architecture and training

CLIPNET is a sequence-to-profile model that takes as input a genomic DNA sequence
of length 1000 and outputs strand-specific PRO-cap coverage of the central 500
nucleotides. It is an ensemble model consisting of 9 structurally identical models, each
of which used a distinct holdout set of chromosomes (Supplementary Fig. S1A, B).
The main body of the individual models consists of two convolutional layers (64 filters,
width 8 and 128 filters, width 4), followed by a tower of 9 exponentially dilated con-
volutional layers (64 filters, width 3, dilation factors from 1 to 512) separated by skip
connections. Batch normalization was applied after each convolutional layer. Rectified
linear activations (ReLU) were used for each convolutional layer except for the first,
which utilized an exponential activation to improve interpretability [83]. Max pooling
(width 2) was applied after each of the first two convolutional layers and after the
dilated convolution tower.

18



We partitioned the output of the model into nucleotide-resolution coverage profiles
and total read coverage following the approach pioneered in BPNet [35]. To accommo-
date this prediction strategy, we structured the output layers of the models as follows:
(1) for profile predictions, we applied a dense layer. For simplicity, we concatenated
the two 500 bp coverage profiles into a single length 1000 output vector. (2) To output
total quantity, we applied a global average pooling layer, followed by a single dense
layer. We applied batch normalization, ReLU, and dropout (rate = 0.3) at the end of
each output node. We used negative cosine similarity to evaluate the profile predictions
and mean squared logarithmic error to evaluate the quantity predictions. To jointly
evaluate the prediction accuracies of these two output nodes, we used a multiscale loss
function similar to [35, 41, 43].

Specifically, for a given 500 bp window, let pobs ∈ R1000
≥0 represent the base-

resolution PRO-cap coverage and yprofile ∈ R1000
≥0 and yquantity ∈ R≥0 represent the

profile and quantity predictions, respectively. We then calculated the loss as

Loss = − cos(pobs,yprofile) + λ(log(
∑

pobs + α)− log(yquantity + α))2,

where α = 10−6 was used as a pseudocount and λ = 1/500 was used as a balanc-
ing weight between the profile and quantity loss functions. We found that this weight
allowed for highly accurate profile predictions and reasonably accurate quantity predic-
tions, and that increasing the weight on the quantity loss did not appreciably improve
quantity prediction but came at a major cost in profile prediction.

Model hyperparameters were manually tuned from reasonable starting points used
by previous genomic deep learning models (cf. [35, 41–43]). CLIPNET was imple-
mented in tensorflow [84] (version 2.13.0) and trained using the Adam optimizer
(learning rate = 0.001) with early stopping (patience = 10 epochs). The best model
(minimum validation loss) from each replicate was retained and used for further
analyses.

CLIPNET evaluation metrics

To fairly evaluate both individual models and the CLIPNET ensemble, we considered
a set of high confidence PRO-cap peaks (Supplementary Info. 2). Briefly, we extracted
genomic sequence and PRO-cap coverage around PINTS calls that were present in at
least 60 out of 67 libraries (bedtools multiinter). We considered three summary metrics:
(1) The median Pearson’s r between predicted and observed PRO-cap coverage tracks
(Fig. 1C). For this metric, we represented the strand-specific, length 500 tracks as a
concatenated, length 1000 vector. As Pearson’s r is undefined on constant inputs, we
added a small amount of Gaussian noise, ε ∼ N (0, 10−6), to each position within the
predicted track. (2) The visual correspondence and Pearson’s r between the predicted
and observed positions of both sense and antisense TSSs (Fig. 1D). (3) The Pearson’s
r between the predicted and observed log10 quantities (Fig. 1E). To avoid taking the
log of a potentially zero prediction, we added a pseudocount of 10−1 to both predicted
and observed quantities. For all of these metrics, we evaluated the model ensemble on
the fully withheld data fold (4901 peaks × 67 libraries). We also computed summary
metrics for each of the individual models on both the fully withheld data fold and on
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their individual holdout data folds (Supplementary Fig. 1A). We found that while the
individual models performed reasonably well, prediction accuracy was substantially
improved by ensembling (Fig. 1C-E, Supplementary Fig. S1A).

Predicted and observed PRO-cap tracks at example cis-regulatory elements (Fig.
1F-G, Fig. 3A-B, Supplementary Fig. S3A-B) were computed as follows. We scaled
the profile predictions to match the quantity predictions, then computed the average
predicted and observed tracks across all 67 PRO-cap libraries. Strand-specific tracks
were then visualized at each cis-regulatory element. Annotations were copied from the
UCSC genome browser [85] and the ENCODE SCREEN database [86].

Profile and quantity attribution using DeepSHAP

Gradient-based attribution methods are commonly used due to their computational
efficiency compared to in silico mutagenesis approaches. We used DeepSHAP [45] (ver-
sion 0.42.1), a popular and efficient gradient-based attribution method, to interpret
CLIPNET. As CLIPNET has two separate output nodes, we applied DeepSHAP sep-
arately on the profile and quantity predictions. To consolidate the profile prediction
into a single explainable scalar, we used the profile contribution score described in
BPNet [35]. Rather than computing DeepSHAP scores for all 58 individual genomes,
which would require impractically long compute times for genome-wide analyses, we
instead focused our interpretation analyses on the hg38 reference genome.

Unlike the related DeepLIFT method [87], DeepSHAP calculates attribution
scores with respect to a background average. Following suggestions by the authors
of DeepSHAP, we used a background of 100 randomly sampled cis-regulatory ele-
ment sequences that we dinucleotide shuffled. We calculated DeepSHAP scores for
each model replicate individually, then averaged the DeepSHAP tracks, similar to the
approach taken in Borzoi [41]. For the distal enhancer versus promoter comparisons
displayed in Fig. 1C-D and Supplementary Fig. S2C, we used a distance cutoff of
< 200 bp for promoters and > 2000 bp for distal enhancers from the PINTS peaks to
a GENCODE [88] (version 43) protein coding TSS.

Motif discovery and frequency analysis

DeepSHAP profile and quantity scores were computed on the set of high confi-
dence PRO-cap peaks described above. The lite implementation [50] (version 2.2.0) of
TF-MoDISco [51] was used to cluster high importance subsequences (seqlets) into sum-
mary motifs (seqlets per metacluster = 100, 000), which were then matched against
the JASPAR database [89] (2022, non-redundant vertebrate) using the TOMTOM
algorithm [90]. We identified 116,351 quantity seqlets (115,602 positive, 749 negative)
and profile seqlets 132,121 (115,989 positive, 16,132 negative), which then clustered
into 62 quantity motifs (51 positive, 11 negative) and 100 profile motifs (60 positive
and 40 negative). To generate promoter and distal enhancer motif frequencies (Fig.
2D, E), we counted the number of seqlets that occurred in each type of cis-regulatory
element as described above. For the CpG repeat frequencies (Fig. 2D, E), we man-
ually merged all motifs consisting of degenerate CpG repeats that did not visually
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resemble established TF binding motifs. We only display relatively frequent, interest-
ing motifs in the main and supplementary figures (Fig. 2D, E, Supplementary Fig. S2);
the complete TF-MoDISco outputs can be found in Supplementary Info. 3 (quantity)
and Supplementary Info. 4 (profile).

tiQTL and diQTL prediction benchmarks

Accurate prediction of QTLs is a major challenge for genomic deep learning models
and a useful test for evaluating whether a model is correctly learning the effects of
individual nucleotides [32, 33, 41]. Kristjánsdóttir et al. previously used the large-scale
PRO-cap dataset used in this study to map tiQTLs and diQTLs, SNPs associated with
a cis change in transcription initiation quantity and directionality, respectively [29].
We used this set of QTLs to benchmark CLIPNET’s ability to discriminate the effects
of single nucleotide changes on initiation quantity and directionality. We filtered the
tiQTL and diQTL lists for biallelic SNPs with at least three individuals homozygous
for each allele. As neither set of QTLs were fine-mapped, we further filtered by p-
values (< 10−6 for tiQTLs and < 10−3 for diQTLs), resulting in a set of 2,057 tiQTLs
(Supplementary Info. 5) and 1,027 diQTLs (Supplementary Info. 6) that we used for
benchmarking.

As CLIPNET models were trained using individualized genomic sequences, most
tiQTLs and diQTLs (collectively, QTLs) would have been used to train most of the
model replicates. To fairly evaluate QTL predictions, we constructed a composite
QTL prediction as follows. For QTLs on the completely withheld data fold 0, we
used the predictions from the CLIPNET ensemble. For the QTLs on the remaining
chromosomes, we used the prediction from the model replicate where that QTL was
part of the hold out data fold. Having obtained predictions for each of the QTLs,
we calculated the predicted and observed QTL effects by taking the L2 norm of the
difference vector between averaged homozygous reference and averaged homozygous
alternative tracks. We then applied a log10 transformation to obtain predicted and
observed log L2 scores for each QTL.

Genome-scale in silico mutagenesis

To quantify sequence importance at cis-regulatory elements, we performed window-
shuffled in silico mutagenesis (ISM shuffle) as described in Borzoi [41]. Briefly, for
a given cis-regulatory element, we oriented the sequence such that the max TSS is
on the forward strand. For every position within a given window (in this case ±200
bp) around the max TSS, we replaced the reference sequence with a 10 bp mutation
(dinucleotide shuffled from the entire 1 kb input sequence). We then quantified the
effect of the mutation by comparing the predicted PRO-cap profile (measured using
Pearson’s r) and quantity (measured using difference in log10 quantity) between the
reference and mutated sequences. We performed this shuffling mutagenesis 5 times for
a given cis-regulatory element, and defined the profile and quantity ISM shuffle scores
as the per-position averages across the 5 shuffles.

For the sake of computational tractability, rather than performing ISM shuffle on
all cis-regulatory elements across the reference genome, we instead sampled a random
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subset of 5,000 the high confidence PRO-cap peaks described above (Supplementary
Info. 7). Of these 5,000, 2,125 were CpG islands (defined as 1 kb regions around PRO-
cap peaks with GC content > 0.5 and observed-to-expected CpG ratio > 0.6), of which
2103 did not contain a canonical TATA box. For the TATA ISM shuffles, we filtered
the peak set for those with a match (FIMO [91], default parameters) for the consensus
sequence of the TATA box (CIS-BP [19] M11491 2.00). For the IRF4 and SP1 ISM
shuffles, we filtered for matches to their consensus motifs (CIS-BP motifs M05539 2.00
and M04605 2.00, respectively) and for ChIP-seq peaks GM12878 (ENCODE [68, 92]
narrowPeak call files ENCFF113VGD and ENCFF038AVV, respectively). We identi-
fied 302 TATA-containing (Supplementary Info. 8), 283 IRF4-bound (Supplementary
Info. 9), and 2,120 SP1-bound PRO-cap peaks (Supplementary Info. 10).

We further assessed the sequence properties of the TATA box by quantifying the
effects of point mutations and random 8-mer substitutions in the 302 TATA-containing
PRO-cap peaks. For the point mutation analysis, we replaced each position within
each TATA box with each of the four nucleotides, then calculated the average change
to predicted PRO-cap profile and quantity. To test the hypothesis that TBP binds
AT-rich sequences at TATA-less cis-regulatory elements, we determined the relation-
ship between the GC content of random 8-mer replacements of the TATA box and
the effect of the substitution on predicted PRO-cap profile and quantity. We replaced
each TATA box with random 8-mers sampled from GC distributions between 0.1 and
0.9, then calculated the effect on predicted PRO-cap profile and quantity (averaged
over 5 replacements per GC content level per TATA box). We then assessed the mono-
tonicity of the relationship between replacement GC content and predicted impact by
calculating the Kendall rank correlation coefficient for each TATA box.

Core promoter structure analysis

We conducted targeted analyses of sequence elements within the core promoter region
(approximately TSS −30 bp to TSS +30 bp). Our ISM shuffle analyses identified
three major peaks in importance within this region, roughly corresponding to the
expected locations of the TATA box, the initiator, and the DPR. To verify whether
these predicted importance peaks reflect PIC-core promoter motif interactions, we
examined the structures of three stages of PIC assembly (sequentially, cPIC, mPIC,
and hPIC) onto a composite SCP, which contains all of the main core promoter motifs
[69]. For each PIC stage, we calculated the PIC-core promoter interaction as the
minimum distance between each nucleotide in the SCP and an amino acid residue in
the PIC (PDB 7EG7, 7EG9, and 7EGB, respectively). We visualized these interactions
separately for each PIC stage along with the DeepSHAP profile scores for the SCP
promoter. As the SCP is an artificial promoter not present in an actual genome, we first
embedded it into 1 kb of random sequence (sampled from the dinucleotide distribution
of randomly chosen cis-regulatory elements), then calculated its DeepSHAP profile
score following the procedure described above.
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Supplementary Figure 1

Fig. S1 Additional evaluation metrics for CLIPNET. (A, B) Performance metrics for the
individual model folds when evaluated on the fold 0 (A) or on the individual holdout folds for each
model (B). (C) Sequence logo of the predicted TSS motif.
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Fig. S2 Additional interpretation of CLIPNET with DeepSHAP and TF-MoDISco. (A,
B) Prediction and DeepSHAP quantity and profile scores for the promoters of the ribosomal protein
coding genes RPL10A (A) and RPL35 (B). Both promoters use a TCT box instead of the canonical
CA or TA initiators, which is correctly recognized by CLIPNET. Interesting motifs are highlighted
in insets to the right. (C) Promoters have much higher total initiation than distal enhancers do
(experiment, left; predicted, middle), which is reflected in the number and strength of individual
motifs (DeepSHAP quantity, right; Fig. 2C). (C) Initiator and TATA box motifs identified by TF-
MoDISco quantity. (D) Three examples of CpG-rich motifs identified by TF-MoDISco quantity. (E)
Three non-canonical initiators identified by TF-MoDISco profile. (F) Distribution of observed (left)
and predicted (center) transcription quantity and DeepSHAP quantity scores (right) at promoters
and distal enhancers.

33



6e−6 2.5e−6

0

G
A

hg38, rs185220 A>G

hg38

D
ee

pS
H

A
P 

P
ro

fil
e

D
ee

pS
H

A
P 

P
ro

fil
e

G/G3

0

3

0

Observed

Predicted (model fold 1)

Observed

Predicted (model fold 1)

A/A

T/T

C/CR
P

M

3

0

3

0

0 500Position (bp)

A B 0.25
0

3
0

R
P

M

Observed

Predicted (model fold 7)

0.25
0

3
0

0

Observed

Predicted (model fold 7)

hg38

hg38, rs8050061 T>C

T
C

Supplementary Figure 3

Fig. S3 DeepSHAP profile interpretation of QTL effects. (A, B) Same as Fig. 3C, D, but
showing the DeepSHAP profile scores for each variant.
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Fig. S4 Additional evaluation metrics for CLIPNET (A) Positional distribution of filter acti-
vations in the second convolutional layer (receptive field = 15, right) and the GC content of sequences
driving maximal activation for these filters (left). (B) Metaplot of motif-directed mutagenesis of
canonical TATA box motifs. (C) Monotonicity of the effect of GC shift mutagenesis of TATA boxes
on initiation profile (top) and quantity (bottom).
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Below are brief descriptions of each Supplementary Information file. Files are available
online at https://doi.org/10.1101/2024.03.13.583868.

1

List of GEO accession IDs used to train CLIPNET (txt file).
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2

High confidence PRO-cap peaks used to evaluate CLIPNET (bed file).

3

TF-MoDISco report for DeepSHAP quantity interpretation of CLIPNET (zip archive).

4

TF-MoDISco report for DeepSHAP profile interpretation of CLIPNET (zip archive).

5

tiQTLs used to benchmark CLIPNET (txt file, rsIDs).

6

diQTLs used to benchmark CLIPNET (txt file, rsIDs).

7

A random subset (n = 5000) of Supplementary Info. 2 (bed file).

8

Active TATA-containing cis-regulatory elements (bed file).

9

Active IRF4-containing cis-regulatory elements (bed file).

10

Active SP1-containing cis-regulatory elements (bed file).
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