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Abstract

Sequence-to-function models have broad applications in interpreting the molecular impact of genetic1

variation, yet have been criticized for poor performance in this task. Here we show that training2

models on functional genomic data with matched personal genomes improves their performance at3

variant effect prediction. Variant effect representations are retained even when fine tuning models to4

unseen cellular contexts and experimental readouts. Our results have implications for interpreting5

trait-associated genetic variation.6

Main7

Deep learning models have rapidly become the state of the art for predicting marks of regulatory function from genome8

sequence. Despite accurately predicting both the pattern of chromatin marks and gene expression across genomic9

loci, however, several recent studies have highlighted significant limitations in the ability of some models to predict10

differences between individuals [1, 2]. Existing models struggle most with gene expression predictions, due in part to11

challenges integrating the cis-regulatory effects of distal enhancers [3, 4]. Performance is better in predicting the impact12

of cis-regulatory variation on local features, including transcription initiation, chromatin accessibility, and activity in13

reporter assays [5–7]. However, performance of state-of-the-art models does not yet saturate accuracy even in local14

prediction problems.15

Most sequence-to-function models are trained using a single haploid reference genome as input [4, 8–13]. While this16

approach is computationally tractable and enables the accumulation of large datasets where matched genome sequences17

are not known, training on a single genome prevents models from observing the impact of genetic variation on genome18

function, potentially resulting in poor performance in variant interpretation tasks. Consequently, the extent to which19

training models using personalized genomes improves performance has become a subject of intense interest [14–16].20

We recently described CLIPNET [17], a deep convolutional neural network trained to use input DNA sequences to21

predict maps of transcription initiation measured using PRO-cap, an assay that maps the 5’-capped ends of nascent22

RNAs [18]. We trained CLIPNET using functional data and matched diploid genomes from 58 Yoruban lymphoblastoid23

cell lines (LCLs) (+9 biological replicates) [19]. In addition to accurately predicting transcription initiation at single-24

nucleotide resolution from genome sequences, CLIPNET can correctly impute the effects of genetic variants on both25

transcription initiation quantity (tiQTLs) and directionality (diQTLs) [19].26

Here, we asked whether training CLIPNET using matched personal genome sequences improved its ability to predict27

the impact of genetic variation on transcription initiation. We first trained CLIPNET models on random subsets of the28

67 PRO-cap libraries and their associated personal genomes used in our original study. When predicting across loci on29
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Figure 1: Training deep learning models on personalized genomic sequences improves variant effect prediction.
(A) Schematic of the personalized genomes training scheme used for CLIPNET and the two ablation strategies (training
data subsampling and variant masking/reference training). (B) Evaluation of subsampled models on transcription
initiation profile (left) and quantity (right) prediction (n = 4598 loci). PCC = Pearson’s correlation coefficient. (C)
Evaluation of subsampled models on predicting effects of tiQTLs (left, n = 2057) and diQTLs (right, n = 1207)
(PCC between observed and predicted L2 variant effect scores). In both B and C, the performance of the original
CLIPNET model is indicated by red dashed lines, while the performance of the reference-trained CLIPNET model is
indicated by blue dashed lines. Individual subsampled model performances are indicated by dots, while the mean and
95% confidence intervals are illustrated by line plots. (D) Comparison of tiQTL (left two panels) and diQTL (right
two panels) effect prediction by reference-trained (left panel in each pair) and personalized (right panel in each pair)
CLIPNET models. Points are colored by a Gaussian kernel density estimate.

holdout chromosomes, predictions of the profile (distribution of PRO-cap reads within a given prediction window) and30

the total quantity of transcription initiation rapidly improved in accuracy as the number of training individuals increased,31

with diminishing returns beginning at around 10-20 individuals (Fig. 1B). We observed a similar trend when assessing32

prediction accuracy on personalized genomic sequence near genetic variants associated with proximal cis changes in33

transcription initiation. CLIPNET required training on 20-30 individuals before saturating accuracy in predicting the34

average of individual-level PRO-cap signal near tiQTL and diQTL lead SNPs (Fig. 1C).35

While the subsampling test indicated that training on more individuals improves model accuracy, these results could also36

be explained by CLIPNET benefiting from more training data, irrespective of whether the sequence inputs come from37

personalized genomes or reference genomes. To directly measure the contribution of training on personalized genomes38

to model performance, we trained a CLIPNET model on the full 67 library dataset [17], using only reference genome39

sequence with the genetic variants masked. The reference-trained CLIPNET model performed nearly identically to40

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2025. ; https://doi.org/10.1101/2024.10.15.618510doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618510
http://creativecommons.org/licenses/by/4.0/


Figure 2: CLIPNET fine tuned to predict initiation in K562 outperforms models trained on only reference
genome sequences at predicting MPRA variant effects [23]. (A) Schematic illustrating the procedure for fine
tuning CLIPNET to predicting initiation in K562 and for benchmarking on MPRA variant effect prediction. (B)
Precision-recall curves for all tested models on classifying expression-modulating variants (emVars, n = 2038) vs
expressed non-emVars (n = 4057). To avoid data leakage from pretraining CLIPNET on personal genomes, only
variants from test chromosomes 9, 13, 20, and 21 were analyzed. (C) Bootstrapped estimates of change in area under
the precision-recall curve of all other models compared to CLIPNET.

the personalized CLIPNET model and outperformed most of the subsampled models at predicting initiation profiles41

and quantities across loci in the genome (Fig. 1B, Supplementary Fig. S1). However, the reference-trained model42

substantially underperformed the full personalized CLIPNET model at predicting QTL effects, performing roughly on43

par with subsampled models trained on only 10 or 20 individuals (Fig. 1C-D). Notably, the reference-trained model44

predicted 17.0% (n = 350) of tested tiQTLs and 20.0% (n = 241) of tested diQTLs as having no effect (Fig. 1D). These45

results show that training on larger numbers of functional genomic datasets improves performance across loci, but46

performance on variant effect prediction tasks improves further by using dataset-matched personal genomes.47

We next asked whether the performance gain from using larger functional datasets and matched personal genomes48

generalizes across cell types and experimental readouts. We used massively parallel reporter assays (MPRAs) to as49

a ground truth for regulatory SNP impact. Although PRO-cap and MPRAs measure distinct biological processes,50

transcription initiation and enhancer activity are correlated [20, 21], suggesting that models predicting SNP effects on51

initiation should also perform reasonably well in predicting enhancer activity.52

We used fine tuning to adapt CLIPNET to a K562 PRO-cap dataset [22] and evaluated the accuracy of SNP effect pre-53

diction against a massively parallel reporter assay (MPRA) ground truth [23] (Fig. 2A). The transfer-learned CLIPNET54

K562 model showed strong correlations with experimental PRO-cap data, performing similarly to ProCapNet [10], a55

model trained natively on K562 PRO-cap data using the reference genome, in predictions across loci (Supplementary56

Fig. S2). Despite similar performance across loci, CLIPNET significantly outperformed ProCapNet in distinguishing57

expression-modulating variants (emVars) from non-emVars (Fig. 2B). Both PRO-cap-based models significantly58

outperformed Enformer [9], a large multi-task transformer-based model that has been criticized for poor performance59

on predicting personal gene expression [1, 2].60
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To assess whether the variant representations learned by training on personalized genome sequences improved variant61

effect predictions, we also transferred the reference-trained CLIPNET model to K562. Again, the personalized62

CLIPNET K562 model outperformed the reference-trained CLIPNET K562 model at variant effect prediction, albeit63

by a smaller margin than was observed in the LCL initiation QTL prediction task (p = 0.038; bootstrap test; Fig.64

2B-C). Next, we compared the change in transcription initiation of each SNP predicted by the model to the fold-change65

measured using the MPRA. These results reinforce our initiation QTL analysis and suggest that training on personalized66

genome sequences allows CLIPNET to observe substantial activity differences between nearly identical input DNA67

sequences, which reference-trained models fail to observe.68

Our work has several valuable applications. First, MPRAs are frequently used to identify and validate candidate causal69

SNPs from genetic association studies [23–27]. Achieving reasonable in silico performance by training on both large70

functional genomic datasets and matched personal genomes has widespread potential for interpreting the molecular71

effects of trait-associated SNPs and prioritization for experimental validation. Second, enhancer design is an emerging72

field [28–31]. Models such as CLIPNET and ProCapNet, which predict transcription initiation from local sequences,73

are particularly well suited for designing and interpreting enhancer elements, which often show a stereotypical divergent74

initiation pattern in mammals [18, 21, 32, 33].75

Recent work has shown that while fine-tuning gene expression predictions using genetic variation can improve76

predictions for individual genes, this performance uplift does not generalize to unobserved genes [15, 16]. Expression77

models are most sensitive to promoters and capture the effects of distal enhancers much less accurately [3, 34, 5]. These78

results make intuitive sense: learning accurate long-range models that capture the effect of distal enhancers requires79

fitting two complex and independent functions. First, the impact of DNA sequence on local cis-regulatory activity, and80

second, the complex logic by which different cis-regulatory elements integrate their signals across a locus. Both of81

these complex functions must be learned from a limited set of only˜20,000 genes. Adding to the challenge, most of the82

highly expressed genes across different cell types—where mistakes are penalized heavily for models trained across83

different cell types or tissues—are housekeeping genes, which are less likely to be impacted by enhancers [35]. We84

argue that this complexity, combined with the limited set of training examples, makes the problem even more difficult.85

Our results suggest a path forward for developing accurate variant interpretation models that predict gene expression.86

We propose that the first step is to accurately learn the effect of variants on local cis-regulatory activity. Our findings87

show that local models are substantially improved by incorporating genetic variation and by using larger datasets with88

multiple independent measurements of the same cell or tissue type. Genetic variation enhances the model’s ability to89

generalize to unseen variants and even to distinct experimental readouts, such as MPRAs. Accurate local models can90

then be integrated into models trained to predict gene expression, either through heuristics [5] or through long-range91

transformer-based models trained to learn regulatory logic. We also suggest that training more complex models may92

benefit from adding biological constraints, for instance by initializing model parameters using experimental chromatin93

contact data from assays such as Hi-C or Micro-C. This stepwise approach provides a more feasible path to addressing94

the inherent complexity of gene regulation models, laying the groundwork for better generalizability and numerous95

downstream applications interpreting trait-associated genetic variation.96

Methods97

LCL PRO-cap and personal genome processing98

We downloaded and processed PRO-cap and personal genome data for 58 genetically distinct LCLs (+ 9 replicates)99

as described in the original CLIPNET manuscript [17]. Relevant components of the protocol are reproduced and100

summarized here.101

We downloaded raw PRO-cap read counts from Gene Expression Omnibus accession GSE110638 [19] and phased102

genotypes from the 2019 1000 Genomes Project release (https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/d103

ata_collections/1000_genomes_project/release/20190312_biallelic_SNV_and_INDEL/). To ensure104

consistency between the PRO-cap and genotyping data, we lifted over the PRO-cap libraries from their original hg19105

reference to hg38.106

We generated individualized genomes by applying the genotyped SNPs from each individual to the hg38 reference107

genome. Indels and structural variants were excluded due to their rarity and the complexity that they would introduce.108

To represent diploid genomic sequences, we used a “two-hot" encoding scheme; that is, we encoded each individual109

nucleotide at a given position using a one-hot encoding scheme, then represented the unphased diploid sequence as the110

sum of the two one-hot encoded nucleotides at each position. The sequence AYCR (= A(C/T)C(A/G)), for example,111

would be encoded as [[2, 0, 0, 0], [0, 1, 0, 1], [0, 2, 0, 0], [1, 0, 1, 0]].112
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PRO-cap peaks were individually called in each library using a pre-publication version of PINTS [32] supplied by the113

authors. As cis-regulatory elements commonly consist of two divergently transcribed core promoters spaced roughly114

110 bp apart [18], we filtered for unidirectional PRO-cap peaks on each strand that were no more than 200 bp away115

from a unidirectional peak on the opposite strand. We then extracted 1kb, randomly jittered by up to 250 bp, of matched116

genomic sequence and PRO-cap tracks around the center of each PINTS call.117

To enable model ensembling, we partitioned the genome along chromosomal boundaries into 10 roughly equally sized118

folds. We set aside fold 0 (consisting of chromosomes 9, 13, 20, and 21) for final evaluation of the model ensemble.119

The remaining 9 folds were then used to train 9 replicate models, each of which used a distinct holdout fold. This120

ensures that prediction quality at each position within the genome can be fairly evaluated using individual models.121

Subsampled model training122

We randomly selected n = 5, 10, 15, 20, 30 PRO-cap libraries from the 67 used to train CLIPNET, then trained123

subsampled CLIPNET models on matched personal genome sequences and PRO-cap tracks (obtained as above)124

following the methods described in our previous manuscript (detailed in the following paragraph) [17]. We avoided125

sampling multiple isogenic replicates from the same individual in each subsampling experiment. For each n, we126

performed 5 such runs, resulting in a total of 25 subsampled CLIPNET models.127

Each subsampled CLIPNET model consists of an ensemble of 9 replicate convolutional neural networks (CNNs) trained128

in a leave-one-out fashion using the 9 training folds described above. Individual CNNs use the CLIPNET architecture129

[17], which was inspired by the BPNet [8] architecture. The main body of the network consists of two convolutional130

layers (64 filters, width 8 and 128 filters, width 4), followed by a tower of 9 exponentially dilated convolutional layers131

(64 filters, width 3, dilation factors from 1 to 512) separated by skip connections. Batch normalization was applied132

after each convolutional layer. Rectified linear activations (ReLU) were used for each convolutional layer except for133

the first, which utilized an exponential linear activation. Max pooling (width 2) was applied after each of the first two134

convolutional layers and after the dilated convolution tower.135

We applied two output heads after the convolutional tower. One head (profile) predicts base-resolution distribution of136

PRO-cap reads and consists of a single fully-connected layer, while the other (quantity) predicts the total quantity of137

PRO-cap reads in the output window and consists of an average pooling layer followed by a fully-connected layer. Batch138

normalization and ReLU activation were applied after each fully-connected layer. To jointly evaluate the prediction139

accuracies of these two output heads, we used a multiscale loss function.140

Specifically, for a given 500 bp output window, let pobs ∈ R1000
≥0 represent the base-resolution PRO-cap coverage and

yprofile ∈ R1000
≥0 and yquantity ∈ R≥0 represent the profile and quantity predictions, respectively. We then calculated the

loss as
Loss = – cos(pobs, yprofile) + λ(log(

∑
pobs + α) – log(yquantity + α))2,

where α = 10–6 was used as a pseudocount and λ = 1/500 was used as a balancing weight between the profile and141

quantity loss functions. The models were fit using the Adam optimizer (learning rate = 0.001) with early stopping142

(patience = 10 epochs).143

Variant masking / reference sequence training144

We retrained a CLIPNET model using the full set of 67 PRO-cap libraries, but instead of using the corresponding145

personalized genome sequences, we extracted sequences from the hg38 reference genome. The model architecture,146

hyperparameters, and data splits were as described above and in the CLIPNET paper [17].147

LCL benchmarks148

We benchmarked the subsampled and reference-trained CLIPNET models using the tasks described in our previous149

manuscript [17].150

Specifically, for the cross-loci benchmark, we considered a set of 4598 high confidence PRO-cap peaks on the holdout151

chromosomes. We extracted the hg38 reference sequence and the average RPM-normalized PRO-cap coverage around152

each of these peaks [19], then measured the performance of the models by the median Pearson’s correlation between153

predicted and observed PRO-cap coverage tracks (profile performance) and the Pearson’s correlation between the154

predicted and observed log10 total PRO-cap coverage (quantity performance). In our previous paper, we reported155

performance metrics for each model in the CLIPNET ensemble on its unique holdout set; for the sake of brevity156

here, we only report the performance of the ensemble on the chromosomes that were entirely withheld during training157

(chromosomes 9, 13, 20, and 21).158
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For the tiQTL and diQTL benchmarks, we used a set of 2,057 tiQTLs and 1,027 diQTLs that were previously fine-159

mapped by [19] and used to benchmark CLIPNET [17]. We measured the predicted and observed QTL effects by first160

binning individuals based on their QTL genotype, then taking the L2 norm of the difference vector between averaged161

homozygous reference and averaged homozygous alternative tracks. To avoid data leakage, we used the same QTL162

score compositing scheme we previously described [17]. Specifically, for QTLs on the completely withheld data fold163

0, we used the predictions from the CLIPNET ensemble. For the QTLs on the remaining chromosomes, we used the164

prediction from the model replicate where that QTL was part of the hold out data fold.165

K562 fine tuning166

We used fine tuning to adapt CLIPNET to a K562 PRO-cap dataset. We downloaded bigWig files (ENCSR261KBX)167

containing from the ENCODE data portal [36], then merged isogenic replicates. To maintain consistency across the168

PRO-cap datasets used in this study, we re-called PINTS peaks [32] rather than using the ENCODE peaks and applied169

an RPM transform to the PRO-cap tracks for training and evaluation. As this dataset was mapped to hg38 and K562 is a170

cancer cell line with a poorly defined karyotype, hg38 was used as the source of genome sequences for fine tuning.171

The K562 models were initialized using the weights from the full personalized LCL model (keeping the same172

architecture), then trained to predict PRO-cap profiles and total coverage at K562 PINTS peaks. We opted to use fine173

tuning (i.e., all weights were set as trainable) rather than final layer probing, as CLIPNET is a relatively compact model.174

We used the same hyperparameters as when training the LCL models, but with a single initial warmup epoch at a175

learning rate of 0.0001. Additionally, to prevent potential data leakage in the variant effect prediction tasks, we used the176

same data splits as for the LCL model.177

To test the contribution of pre-training on personalized genomic sequences, we also applied the same fine tuning178

procedures to the reference-trained CLIPNET LCL model.179

K562 PRO-cap prediction benchmark180

We compared the performance of CLIPNET and ProCapNet at cross-loci prediction in K562. Since the two models181

used different holdout datasets, we decided to evaluate the prediction accuracies of individual CLIPNET and ProCapNet182

model folds on their respective holdout chromosomes. We calculated the median Pearson’s correlation between183

the predicted and observed profiles, as well as the Pearson’s correlation between the predicted and observed log1 0184

transcription initiation quantities (RPM-scaled for CLIPNET, raw counts for ProCapNet). The custom K562 peak call185

set used to train CLIPNET was used for both models. CLIPNET was evaluated on 1000 bp sequence windows and 500186

bp tracks, whereas ProCapNet was evaluated on 2114 bp sequence windows and 1000 bp tracks.187

K562 MPRA benchmark188

Siraj et al. recently characterized the impact of hundreds of thousands of non-coding variants in MPRAs across several189

human cell lines [23]. We chose to analyze the K562 MPRA dataset, as K562 is the only cell line tested in that study190

with published PRO-cap data, and which was used to train Enformer [9] and ProCapNet [10] models.191

To test the ability of CLIPNET K562 (both personal and reference-pre-trained) to SNP effects in this MPRA, we192

reconstructed the MPRA sequences by inserting the tested 200 bp oligonucleotides (Supplemental Table 2 of [23])193

directly upstream of the minimal TATA promoter of pMPRAv3:minP-GFP, (Addgene #109035) as described in [23].194

We then extracted 1 kb of sequence from each reporter containing the oligonucleotide insert and the minimal promoter.195

We predicted the transcription initiation quantity for each allele and measured the predicted effect of each SNP as the196

log2 ratio of the reference and alternate allele predictions.197

To generate ProCapNet [10] predictions, we simply padded the sequences constructed for CLIPNET out to the 2114 bp198

context length used by that model using the reporter backbone. We calculated the average predicted initiation quantity199

across the 7 ProCapNet K562 model replicates (ENCFF976FHE) for each reporter construct, then calculated the SNP200

effects as described for CLIPNET.201

For the Enformer [9] predictions, we used the endogenous genomic sequences surrounding each SNP, as the long202

context length used for this model makes it impractical to test on the reporter sequences. We extracted 196,608 bp of203

sequence centered on each SNP (excluding those that would cause spillovers off the edge of the chromosome), then204

predicted K562 DNase (tracks 33, 34, 35, 121, 122, 123, and 625) and CAGE (tracks 4828, 5111) tracks in the central 8205

bins (representing 1024 bp) using the PyTorch implementation of Enformer (https://github.com/lucidrains/en206

former-pytorch/). After some testing, we determined that K562 DNase (specifically, track 122, corresponding to207

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2025. ; https://doi.org/10.1101/2024.10.15.618510doi: bioRxiv preprint 

https://www.biorxiv.org/content/10.1101/2024.05.05.592437v1.supplementary-material
https://www.addgene.org/109035/
https://github.com/lucidrains/enformer-pytorch/
https://github.com/lucidrains/enformer-pytorch/
https://github.com/lucidrains/enformer-pytorch/
https://doi.org/10.1101/2024.10.15.618510
http://creativecommons.org/licenses/by/4.0/


ENCODE accession ENCFF868NHV) was the best predictor for MPRA SNP effect (as described below). We thus set208

the Enformer SNP predictions as the log2 ratio between the reference and alternative allele DNase predictions.209

We considered the following two benchmarks for MPRA prediction. First, we measured the ability of each model to210

distinguish between expression modulating variants (emVar) and active non-emVars in K562 (Supplemental Table 3211

of [23]). Specifically, we calculated precision-recall curves (PRC), using the square of the SNP prediction for each212

model as the predictor. To avoid possible data leakage from variants in the pre-training of the personalized CLIPNET213

model, we only considered variants on the holdout chromosomes for CLIPNET (chromosomes 9, 13, 20, and 21).214

We also excluded variants that would cause chromosome edge spillovers for Enformer, resulting in 2038 emVars and215

4057 non-emVars. We observed that the personalized CLIPNET K562 model achieved the highest area under the PRC216

(auPRC). To measure the accuracy of this estimate, we performed n = 1000 bootstraps of the holdout SNPs, then217

calculated the difference in auPRC between all other models and the personalized CLIPNET K562 model.218

Since both CLIPNET K562 models and ProCapNet K562 produce predictions of transcription initiation, we also219

quantitatively assessed the SNP effect predictions made by all three models. We generated scatterplots of the log2FC220

predictions made by each model against the observed log2FC values (specifically, mean RNA counts/mean DNA221

counts per allele). We also calculated Pearson’s correlation coefficients and sign mismatches between the predicted and222

observed log2FC values.223
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Supplementary Figures349

Figure S1: Comparison of reference-trained and personalized CLIPNET predictions in LCLs across genomic
loci. (A) Initiation profiles predictions between reference-trained and personalized CLIPNET models are highly
correlated (median profile Pearson’s correlation between predictions = 0.957). (B) Initiation quantity predictions
between reference-trained and personalized CLIPNET models are highly correlated (Pearson’s correlation = 0.980).
Points are colored by a Gaussian kernel density estimate.

Figure S2: Comparison of CLIPNET and ProCapNet cross-loci predictions in K562. (A) Initiation profile
prediction accuracy (median Pearson’s correlation of model replicates). (B) Initiation quantity prediction (Pearson’s
correlation across model replicates). CLIPNET (n = 9) and ProCapNet (n = 7) models were evaluated on their respective
holdout chromosomes. Box plots represent median and upper/lower quartiles.
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